How do you divide #(-3x^3 - x^2 - 11x + 30)/(2x+2)#?

1 Answer
Apr 14, 2017

#-3/2x^2+x-13/2+43/(2x+2)#

Explanation:

What follows is the 'traditional long division' but in a different format. The processes are exactly the same.

#" "-3x^3-x^2-11x+30#
#color(magenta)(-3/2x^2)(2x+2)->" "ul(-3x^3-3x^2) larr" subtract"#
#" "0+2x^2-11x+30#
#" "color(magenta)(x)(2x+2)->" "ul(2x^2+2x) larr" subtract"#
#" "0-13x+30#
#color(white)(.)color(magenta)(-13/2)(2x+2)->" " ul(-13x-13)#
#color(magenta)(" Remainder "->0+43)#

#color(magenta)(-3/2x^2+x-13/2+43/(2x+2)#