How do you divide #(4x^5 +8x^4 -8x^3 +4x^2 +x-8) / (5x^2 -4x+9)#? Algebra Rational Equations and Functions Division of Polynomials 1 Answer A08 Mar 23, 2016 Since coefficient of highest power of #x#, i.e ., #x^2# term in the denominator is #!=1#, therefore we need to divide using the long division method. Quotient #=4/5x^3+56/25x^2-156/125x+1396/625# Remainder#=13229/625x-17564/625# Explanation: #color(white)(WWWWWWW)4/5x^3+56/25x^2-156/125x+1396/625# #5x^2-4x+9)bar(4x^5+8x^4-8x^3+4x^2+x-8)(# #color(white)(WWWWWW)4x^5-16/5x^4+36/5x^3# #color(white)(WWWWW)ul(-color(white)(iiW)+color(white)(WiW)-color(white)(WWWWW))# #color(white)(WWWWWWWWW)56/5x^4-76/5x^3+" "4x^2# #color(white)(WWWWWWWWW)56/5x^4-224/25x^3+504/25x^2# #color(white)(WWWWWWWW)ul(-color(white)(WiiW)+color(white)(WiW)-color(white)(WWW))# #color(white)(WWWWWWWWWWW)-156/25x^3+404/25x^2+x# #color(white)(WWWWWWWWWWW)-156/25x^3+624/125x^2-1404/125x# #color(white)(WWWWWWIWW)ul(color(white)(WiiW)+color(white)(WWW)-color(white)(iWW)+)# #color(white)(WWWWWWWWWWWWW)1396/125x^2+1529/125x-8# #color(white)(WWWWWWWWWWWWW)1396/125x^2-5584/625x+12564/625# #color(white)(WWWWWWWiWW)ul(color(white)(WiiW)-color(white)(WWW)+color(white)(WiWW)-)# #color(white)(WWWWWWWWWWWWWWWWW)13229/625x-17564/625# Answer link Related questions What is an example of long division of polynomials? How do you do long division of polynomials with remainders? How do you divide #9x^2-16# by #3x+4#? How do you divide #\frac{x^2+2x-5}{x}#? How do you divide #\frac{x^2+3x+6}{x+1}#? How do you divide #\frac{x^4-2x}{8x+24}#? How do you divide: #(4x^2-10x-24)# divide by (2x+3)? How do you divide: #5a^2+6a-9# into #25a^4#? How do you simplify #(3m^22 + 27 mn - 12)/(3m)#? How do you simplify #(25-a^2) / (a^2 +a -30)#? See all questions in Division of Polynomials Impact of this question 1518 views around the world You can reuse this answer Creative Commons License