How do you divide #(9x^3-19x^2-28x+12)div(x-3)# using synthetic division?

1 Answer
May 21, 2017

Answer:

The remainder is #=0# and the quotient is #=9x^2+8x-4#

Explanation:

Let's perform the synthetic division

#color(white)(aaaa)##3##color(white)(aaaaa)##|##color(white)(aaaa)##9##color(white)(aaaaaa)##-19##color(white)(aaaaaa)##-28##color(white)(aaaa)##12#
#color(white)(aaaaaaaaaaaa)#_________

#color(white)(aaaa)##color(white)(aaaaaaa)##|##color(white)(aaaa)##color(white)(aaaaaaaa)##27##color(white)(aaaaaaa)##24##color(white)(aaa)##-12#
#color(white)(aaaaaaaaaaaa)#________

#color(white)(aaaa)##color(white)(aaaaaaa)##|##color(white)(aaaa)##9##color(white)(aaaaaaaa)##8##color(white)(aaaaaa)##-4##color(white)(aaaaaa)##color(red)(0)#

#(9x^3-19x^2-28x+12)/(x-3)=(9x^2+8x-4)#

The remainder is #=0# and the quotient is #=9x^2+8x-4#