How do you divide #(x^3+x+3)/(x-5)#?
3 Answers
The remainder is
Explanation:
Let's perform a synthetic division
The remainder is
Explanation:
#"one way is to use the divisor as a factor in the numerator"#
#"consider the numerator"#
#color(red)(x^2)(x-5)color(magenta)(+5x^2)+x+3#
#=color(red)(x^2)(x-5)color(red)(+5x)(x-5)color(magenta)(+25x)+x+3#
#=color(red)(x^2)(x-5)color(red)(+5x)(x-5)color(red)(+26)(x-5)color(magenta)(+130)+3#
#=color(red)(x^2)(x-5)color(red)(+5x)(x-5)color(red)(+26)(x-5)+133#
#"quotient "=color(red)(x^2+5x+26)," remainder" =133#
#rArr(x^3+x+3)/(x-5)=x^2+5x+26+133/(x-5)#
Quotient
Explanation: