How do you do this integral ? (1-cos(x/3))/sen(x/2)

1 Answer
Feb 27, 2018

#int (1-cos(x/3))/sin(x/2)dx = 3 ln abs((2cos (x/6)+1)/ (2cos(x/6)-1) )+C #

Explanation:

Evaluate:

#int (1-cos(x/3))/sin(x/2)dx#

Substitute #t= x/6#

#int (1-cos(x/3))/sin(x/2)dx = 6 int (1-cos 2t)/sin(3t) dt#

use the trigonometric identities:

#1-cos 2t = 2sin^2t#

#sin 3t = 3sint-4sin^3t#

to have:

#int (1-cos(x/3))/sin(x/2)dx = 12 int sin^2t/( 3sint-4sin^3t) dt#

simplifying:

#int (1-cos(x/3))/sin(x/2)dx = 12 int sint/( 3-4sin^2t) dt#

Now write the denominator as:

#3-4sin^2t = 4 -4sin^2t -1 = 4(1-sin^2t) -1 = 4cos^2t-1#

so:

#int (1-cos(x/3))/sin(x/2)dx = 12 int sint/( 4cos^2t-1) dt#

and substituting #u=cost# #du= -sint dt#

#int (1-cos(x/3))/sin(x/2)dx = -12 int (du)/( 4u^2-1) dt#

decompose the rational function in partial fractions:

#1/(4u^2-1) = 1/((2u-1)(2u+1)) = A/(2u-1)+B/(2u+1)#

#A(2u+1)+B(2u-1) = 1#

#2(A+B)u + (A-B) = 1#

#{(A+B = 0),(A-B = 1):}#

#{(A=1/2),(B=-1/2):}#

#int (1-cos(x/3))/sin(x/2)dx = -6 int (du)/(2u-1) +6int (du)/(2u+1)#

#int (1-cos(x/3))/sin(x/2)dx = -3 ln abs(2u-1) +3 ln abs (2u+1) +C #

undoing the substitution and using the properties of logarithms:

#int (1-cos(x/3))/sin(x/2)dx = 3 ln abs((2cos (x/6)+1)/ (2cos(x/6)-1) )+C #