How do you evaluate #2^ { - 2} \cdot ( 12\cdot 3) - 5^ { 3}#?

3 Answers
Jul 3, 2018

The answer is -116.

Explanation:

#2^ { - 2} xx( 12xx 3) - 5^ { 3}#

#= 1/2^2 xx 36 - 125#

#= 36/4- 125#

#= 9 - 125#

#= -116#

Jul 4, 2018

#-116#

Explanation:

#color(blue)(2^(-2))*color(purple)((12*3))-color(red)(5^3)#

To get rid of the negative exponent, we take it to the denominator to get

#1/(2^2)=color(blue)(1/4)#

#12*3=color(purple)(36)#

#5^3=5*5*5=color(red)(125)#

Putting it all together, we get

#1/4*36-125#

#1/cancel4*9cancel36-125#

#=>9-125=-116#

Hope this helps!

Aug 9, 2018

#-122#

Explanation:

#2^-2 xx (12 xx 3) - 5^3#

Apply laws of indices:

#1/cancel(2^2) xx cancel(2^2) xx3 -5^3#

#=3-125#

#=-122#