How do you evaluate #(3e^-x+6)/(6e^-x+3)# as x approaches infinity? Calculus Limits Determining Limits Algebraically 1 Answer Konstantinos Michailidis May 16, 2016 As #x->+oo# then #e^-x->0# hence the limit is #lim_(x->+oo) (3*e^-x+6)/(6*e^-x+3)=6/3=2# As #x->-oo# then #e^-x->oo# hence the limit is #lim_(x->-oo) (3*e^-x+6)/(6*e^-x+3)=3/6=1/2# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1779 views around the world You can reuse this answer Creative Commons License