How do you evaluate #[ (\frac { 1} { 3} + i \frac { 7} { 3} ) + ( 4+ i \frac { 1} { 3} ) ] - ( - \frac { 4} { 3} + i )#?

2 Answers

Answer:

#(17/3)+i(5/3)#

Explanation:

Adding the real parts

#1/3+4+4/3=17/3#

Adding the imaginary parts

#7/3+1/3-1=5/3#

Hence, the sum is

#Re (z)+Im (z)#

where #z# is a complex number.

Jan 30, 2018

Answer:

Use the distributive property to distribute the implied -1 through the parenthesis of the last term, then remove the braces and parenthesis and combine like terms.

Explanation:

Given: #[(1/3+i7/3)+(4+i1/3)]-(-4/3+i)#

Distribute the implied -1:

#[(1/3+i7/3)+(4+i1/3)]+(4/3-i)#

Remove the braces and parenthesis:

#1/3+i7/3+4+i1/3+4/3-i#

Combine like terms:

#1/3+4+4/3+i(7/3+1/3-1)#

#17/3+i5/3#