How do you evaluate #\sqrt { 10x ^ { 6} } \sqrt { 5x }#?

1 Answer
Sep 15, 2017

#sqrt(50x^7)#

Explanation:

Remember that #sqrt(a) * sqrt(b) = sqrt(a * b)#

...so you can just combine these as a multiple, all under one radical sign:

#sqrt(10x^6) * sqrt(5x) = sqrt(10x^6 * 5x)#

# = sqrt(50x^7)#

...if 50 were a perfect square, or if the x in this expression was raised to an even power, you could simplify it (removing the radical sign). But alas, it's not the case. So I think you can stop here.

GOOD LUCK!