How do you evaluate the integral #int 1/(x(1+(lnx)^2)#?
1 Answer
Feb 5, 2017
Explanation:
Let
#int1/(x(1+(lnx)^2))dx=int1/(1+(lnx)^2)(1/xdx)=int1/(1+u^2)du#
This is the arctangent integral:
#=arctan(u)+C=arctan(lnx)+C#