How do you evaluate the integral #int cos^3xsqrtsinx#?

1 Answer
Jan 21, 2017

#2/3(sinx)^(3/2) - 2/7(sinx)^(7/2) + C#

Explanation:

Let #u = sinx#.

Then #du = cosxdx# and #dx = (du)/cosx#

#=>intcos^3xsqrt(u) * (du)/cosx#

#=>int cos^2x sqrt(u)du#

We can rewrite #cos^2x# as #1 - sin^2x#.

#=>int (1 - sin^2x)sqrt(u)du#

Since #u = sinx#, #u^2 = sin^2x#

#=>int(1 - u^2)sqrt(u)du#

#=> int(1 - u^2)u^(1/2)du#

#=>int u^(1/2) - u^(5/2)du#

This can be evaluate as #intx^ndx = x^(n + 1)/(n + 1) + C#

#=>2/3u^(3/2) - 2/7u^(7/2) + C#

#=>2/3(sinx)^(3/2) - 2/7(sinx)^(7/2) + C#

Hopefully this helps!