How do you evaluate the integral #int cos(root3x)#?
1 Answer
Apr 2, 2017
Explanation:
#I=intcos(root3x)dx#
First, let
#I=intcos(t)(3t^2)dt=int3t^2cos(t)dt#
Now we perform integration by parts. Let:
#{(u=3t^2,=>,du=6tdt),(dv=cos(t)dt,=>,v=sin(t)):}#
Then:
#I=3t^2sin(t)-int6tsin(t)dt#
Integration by parts again:
#{(u=6t,=>,du=6dt),(dv=sin(t)dt,=>,v=-cos(t)):}#
Paying attention to sign:
#I=3t^2sin(t)-(6t(-cos(t))-int(-6cos(t))dt)#
#I=3t^2sin(t)+6tcos(t)-int6cos(t)dt#
#I=3t^2sin(t)+6tcos(t)-6sin(t)+C#
Using
#I=3root3(x^2)sin(root3x)+6root3xcos(root3x)-6sin(root3x)+C#