How do you evaluate the integral #int x^2/(4+x^2)^2dx#?

1 Answer
Aug 12, 2017

#intcolor(white)(l)(x^2)/((4+x^2)^2)color(white)(l)dx = color(blue)(1/4(tan^-1[x/2] - (2x)/(x^2+4)) + C#

Explanation:

We're asked to find the integral

#intcolor(white)(l)(x^2)/((x^2+4)^2)color(white)(l)dx#

Let's split this up into partial fractions:

#= intcolor(white)(l)1/(x^2+4) - 4/((x^2+4)^2)color(white)(l)dx#

#= intcolor(white)(l)1/(x^2+4)color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx#

#= intcolor(white)(l)1/(4((x^2)/4+1))color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx#

#= 1/4intcolor(white)(l)1/(4((x^2)/4+1))color(white)(l)dx - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx#

For the integrand #1/((x^2)/4+1)#, let's make #u = x/2# and #dx = 2color(white)(l)du#:

#= 1/2intcolor(white)(l)1/(u^2+1)color(white)(l)du - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx#

The integral of #1/(u^2+1)# is #tan^-1u#:

#= 1/2tan^-1u - 4intcolor(white)(l)1/((x^2+4)^2)color(white)(l)dx#

For the integrand #1/((x^2+4)^2)#, let's make #x = 2tans# and #dx = 2sec^2scolor(white)(l)ds#.

Then #(x^2+4)^2 = (4tan^2s+4)^2 = 16sec^4s# and #s = tan^-1[x/2]#:

#= 1/2tan^-1u - 8intcolor(white)(l)1/16cos^2scolor(white)(l)ds#

#= 1/2tan^-1u - 1/2intcolor(white)(l)cos^2scolor(white)(l)ds#

We can write #cos^2s# as #1/2cos[2s] + 1/2#:

#= 1/2tan^-1u - 1/2intcolor(white)(l)1/2cos[2s] + 1/2color(white)(l)ds#

#= 1/2tan^-1u - 1/4intcolor(white)(l)cos[2s]color(white)(l)ds - 1/4intcolor(white)(l)1color(white)(l)ds#

For the integrand #cos[2s]#, let's make #p = 2s# and #ds = 1/2dp#:

#= 1/2tan^-1u - 1/8intcolor(white)(l)cospcolor(white)(l)dp - 1/4intcolor(white)(l)1color(white)(l)ds#

The integral of #cosp# is #sinp#:

#= 1/2tan^-1u - 1/8sinp - 1/4intcolor(white)(l)1color(white)(l)ds#

The integral of #1# is #s#:

#= 1/2tan^-1u - 1/8sinp - 1/4s + C#

Substitute back in #p = 2s#:

#= 1/2tan^-1u - 1/8sin[2s] - 1/4s + C#

Substitute back in #s = tan^-1[x/2]#:

#= ((x^2+4)(2tan^-1u - tan^-1[x/2]) - 2x)/(4(x^2+4)) + C#

Substitute back in #u = x/2#:

#= ((x^2+4)tan^-1[x/2] - 2x)/(4(x^2+4)) + C#

Or

#color(blue)(ulbar(|stackrel(" ")(" "I = 1/4(tan^-1[x/2] - (2x)/(x^2+4)) + C" ")|)#