How do you evaluate the limit #3x^3-2x^2+4# as x approaches #1#? Calculus Limits Determining Limits Algebraically 1 Answer Steve M Nov 18, 2016 # lim_(x rarr 1) f(x) = 5# Explanation: Let # f(x)=3x^3-2x^2+4#, Then #f(x)# is a polynomial and as such it is continuous #AA x in RR# So, # lim_(x rarr c) f(x) = f(c) AA x in RR, c in RR# Hence, # lim_(x rarr 1) f(x) = f(1) = 3-2+4 = 5# Answer link Related questions How do you find the limit #lim_(x->5)(x^2-6x+5)/(x^2-25)# ? How do you find the limit #lim_(x->3^+)|3-x|/(x^2-2x-3)# ? How do you find the limit #lim_(x->4)(x^3-64)/(x^2-8x+16)# ? How do you find the limit #lim_(x->2)(x^2+x-6)/(x-2)# ? How do you find the limit #lim_(x->-4)(x^2+5x+4)/(x^2+3x-4)# ? How do you find the limit #lim_(t->-3)(t^2-9)/(2t^2+7t+3)# ? How do you find the limit #lim_(h->0)((4+h)^2-16)/h# ? How do you find the limit #lim_(h->0)((2+h)^3-8)/h# ? How do you find the limit #lim_(x->9)(9-x)/(3-sqrt(x))# ? How do you find the limit #lim_(h->0)(sqrt(1+h)-1)/h# ? See all questions in Determining Limits Algebraically Impact of this question 1829 views around the world You can reuse this answer Creative Commons License