How do you express cos theta - cos^2 theta + sec theta in terms of sin theta ?

1 Answer

sqrt(1-sin^2 theta)-(1-sin^2 theta)+1/sqrt(1-sin^2 theta)
just simplify it further if you need to.

Explanation:

From the given data:
How do you express cos theta−cos^2 theta+sec theta in terms of
sin theta?

Solution:

from the fundamental trigonometric identities

Sin^2 theta+Cos^2 theta=1
it follows

cos theta=sqrt(1-sin^2 theta)

cos^2 theta=1-sin^2 theta

also

sec theta=1/cos theta

therefore

cos theta−cos^2 theta+sec theta

sqrt(1-sin^2 theta)-(1-sin^2 theta)+1/sqrt(1-sin^2 theta)

God bless...I hope the explanation is useful.