How do you factor #100+4x^2-16y-40x#?
1 Answer
Apr 21, 2017
If the
#100+4x^2-16y^2-40x = 4(x-2y-5)(x+2y-5)#
Explanation:
For the record: I think the question should have specified
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
Use this with
#100+4x^2-16y^2-40x = 4(x^2-10x+25-4y^2)#
#color(white)(100+4x^2-16y^2-40x) = 4(x^2-2x(5)+5^2-4y^2)#
#color(white)(100+4x^2-16y^2-40x) = 4((x-5)^2-(2y)^2)#
#color(white)(100+4x^2-16y^2-40x) = 4((x-5)-2y)((x-5)+2y)#
#color(white)(100+4x^2-16y^2-40x) = 4(x-2y-5)(x+2y-5)#