How do you factor #10x^2 + 5 + 27x#?

1 Answer
Jun 6, 2016

Answer:

#(2x+5)(5x+1)#

Explanation:

let's first solve the equation:
#10x^2+27x+5=0#

and find the zeroes

#x=(-27+-sqrt(27^2-4*10*5))/(2*10)#
then
#x=(-27+-sqrt(729-200))/(20)#
#x=(-27+-23)/(20)#
#x=-5/2 and x=-1/5#

let's factor
#10x^2+27x+5=10(x+5/2)(x+1/5)#

let's eliminate fractions by multiplying :
#2(x+5/2)5(x+1/5)#
#(2x+5)(5x+1)#