How do you factor #12x^2+69x+45#?

2 Answers
Jun 14, 2017

The equation can be factorised to #3(4x+3)(x+5)#

Explanation:

Use the general formula
#x = (-b +- sqrt(b^2 -4ac))/(2a)#

Substitute in the given values
#x = (-69 +- sqrt(69^2 -4*12*45))/(24)#

simplify
#x = (-69 +- 51)/(24)#

#x_"1" = -3/4#
#x_"2" = -5#

Put those values back into #a(x-x_"1")(x-x_"2")#

gives

#12(x +3/4)(x+5)#

rearranging
#3(4x+3)(x+5)#

Jun 23, 2017

f(x) = 3(4x + 3)(x + 5)

Explanation:

#f(x) = 3y = 12x^2 + 69x + 45 = 3(4x^2 + 23x + 15)#
Factor the trinomial y in parentheses.
#y = 4x^2 + 23x + 15#
Use the new AC Method to factor trinomials (Socratic Search)
y = 4(x + p)(x + q)
Converted trinomial:
#y' = x^2 + 23x + 60 =# (x + p')(x + q')
Find 2 numbers knowing sum (b = 23) and product (ac = 60).
They are: 3 and 20. Back to y, we get:
#p = (p')/a = 3/4#, and #q = (q')/a = 20/4 = 5#
Factored form:
y = 4(x + 3/4)(x + 5) = (4x + 3)(x + 5)
f(x) = 3y = 3(4x + 3)(x + 5)