How do you factor #2x^4-19x^3+57x^2-64x+20#?
1 Answer
Use the rational root theorem to help find the first couple of factors and separate them out to find:
#2x^4-19x^3+57x^2-64x+20 = (2x-1)(x-2)(x-2)(x-5)#
Explanation:
Let
By the rational root theorem any rational zeros of
So the only possible rational roots are:
#+-1/2# ,#+-1# ,#+-2# ,#+-5/2# ,#+-4# ,#+-5# ,#+-10# ,#+-20#
Trying these in turn we find:
#f(1/2) = 1/8-19/8+57/4-32+20 = (1-19+114-256+160)/8 = 0#
So
#2x^4-19x^3+57x^2-64x+20 = (2x-1)(x^3-9x^2+24x-20)#
Having 'used up' the factor of
#+-1# ,#+-2# ,#+-4# ,#+-5# ,#+-10# ,#+-20#
Let
We find:
#g(1) = 1-9+24-20 = -4#
#g(-1) = -1-9-24-20 = -54#
#g(2) = 8-36+48-20 = 0#
So
#(2x-1)(x^3-9x^2+24x-20) = (2x-1)(x-2)(x^2-7x+10)#
The remaining quadratic can be factored by noticing that
#(2x-1)(x-2)(x^2-7x+10) = (2x-1)(x-2)(x-2)(x-5)#
graph{2x^4-19x^3+57x^2-64x+20 [-7.42, 12.58, -5.8, 4.2]}