How do you factor #3x^{2}-48x+525#?

2 Answers
Jan 27, 2017

Factors of #3x^2-48x+525# are #3(x-8-isqrt111)(x-8+isqrt111)#

Explanation:

For factorizing quadratic polynomials, just find the value of discriminant. The discriminant for a quadratic polynomial #ax^2+bx+c# is #Delta=b^2-4ac# and then

the zeros of the polynomial are given by #(-b+-sqrtDelta)/(2a)# and factors of polynomial are #a(x-(-b-sqrtDelta)/(2a))(x-(-b+sqrtDelta)/(2a))#

In the quadratic polynomial #3x^2-48x+525#, we have #Delta=(-48)^2-4xx3xx525=2304-6300=-3996#

and roots are #(-(-48)+-sqrt(-3996))/6=(-(-48)+-6isqrt111)/6#,

where #i=sqrt(-1)#

and factors of #3x^2-48x+525# are

#3(x-(48-6isqrt111)/6)(x-(48+6isqrt111)/6)#

or #3(x-8-isqrt111)(x-8+isqrt111)#

Jan 27, 2017

#3x^2-48x+525 = 3(x-8-sqrt(111)i)(x-8+sqrt(111)i)#

Explanation:

One method involves completing the square.

We will also use the difference of squares identity:

#a^2-b^2 = (a-b)(a+b)#

with #a=(x-8)# and #b=sqrt(111)i# as follows:

#3x^2-48x+525 = 3(x^2-16x+175)#

#color(white)(3x^2-48x+525) = 3(x^2-16x+64+111)#

#color(white)(3x^2-48x+525) = 3((x-8)^2-(sqrt(111)i)^2)#

#color(white)(3x^2-48x+525) = 3((x-8)-sqrt(111)i)((x-8)+sqrt(111)i)#

#color(white)(3x^2-48x+525) = 3(x-8-sqrt(111)i)(x-8+sqrt(111)i)#