How do you factor #4m^4 - 37m^2 + 9#?
2 Answers
Explanation:
Factoring this polynomial gives:
Explanation:
The difference of squares identity can be written:
#a^2-b^2 = (a-b)(a+b)#
We will use this a couple of times, but first note that:
#4m^4-37m^2+9 = 4(m^2)^2-37(m^2)+9#
So we can treat this quartic as a quadratic in
Factor using an AC method:
Look for a pair of factors of
The pair
Use this pair to split the middle term and factor by grouping:
#4(m^2)^2-37(m^2)+9 = 4(m^2)^2-36(m^2)-(m^2)+9#
#color(white)(4(m^2)^2-37(m^2)+9) = (4(m^2)^2-36(m^2))-((m^2)-9)#
#color(white)(4(m^2)^2-37(m^2)+9) = 4m^2(m^2-9)-1(m^2-9)#
#color(white)(4(m^2)^2-37(m^2)+9) = (4m^2-1)(m^2-9)#
#color(white)(4(m^2)^2-37(m^2)+9) = ((2m)^2-1^2)(m^2-3^2)#
#color(white)(4(m^2)^2-37(m^2)+9) = (2m-1)(2m+1)(m-3)(m+3)#