How do you factor #9x^2 - 36x + 24#?

1 Answer
Jun 1, 2016

9(x - x1)(x - x2)

Explanation:

#f(x) = 3y = 3(3x^2 - 12x + 8)#
Factor y, the trinomial in parentheses -->
#y = 3x^2 - 12x + 8#
#D = b^2 - 4ac = 144 - 96 = 48# --> #d = +-4sqrt3#
There are 2 real roots:
#x = -b/(2a) +- d/(2a) = 2 +- (2sqrt3)/3 #
The 2 real roots are:
#x1 = 2 + (2sqrt3)/3#
#x2 = 2 - (2sqrt3)/3#
f(x) can be written in the factored form:

#f(x) = 3y = 9(x - x1)(x - x2) = = 9(x - 2 + (2sqrt3)/3)(x - 2 - (sqrt3)/3)#