How do you factor #9z^2 + 6z - 8#?
2 Answers
Explanation:
Given:
#9z^2+6z-8#
This example can be factored using an AC method:
Find a pair of factors of
The pair
Use this pair to split the middle term, then factor by grouping:
#9z^2+6z-8 = 9z^2+12z-6z-8#
#color(white)(9z^2+6z-8) = (9z^2+12z)-(6z+8)#
#color(white)(9z^2+6z-8) = 3z(3z+4)-2(3z+4)#
#color(white)(9z^2+6z-8) = (3z-2)(3z+4)#
Explanation:
Given:
#9z^2+6z-8#
We can factor this quadratic by completing the square.
We will also use the difference of squares identity:
#a^2-b^2 = (a-b)(a+b)#
with
Note that:
#31^2 = 961#
So:
#(3z+1)^2 = 9z^2+6z+1#
[Think what happens when
Hence:
#9z^2+6z-8 = 9z^2+6z+1-9#
#color(white)(9z^2+6z-8) = (3z+1)^2-3^2#
#color(white)(9z^2+6z-8) = ((3z+1)-3)((3z+1)+3)#
#color(white)(9z^2+6z-8) = (3z-2)(3z+4)#