How do you factor #(a+b)³ - (a-b)³#?

1 Answer
May 23, 2015

Expanding:

#(a+b)^3-(a-b)^3#

#= (a^3+3a^2b+3ab^2+b^3)-(a^3-3a^2b+3ab^2-b^3)#

#= 6a^2b+2b^3#

#=2b(3a^2+b^2)#

If you are allowed complex coefficients this can be broken down into linear factors:

#=2b(sqrt(3)a+ib)(sqrt(3)a-ib)#

Notice also that:

#(a+b)^3+(a-b)^3 = (b+a)^3-(b-a)^3 = 2a(3b^2+a^2)#