How do you factor by grouping. #4+5xy-10y-2x#?

1 Answer
Mar 12, 2018

Answer:

#(2-x)(2-5y)#

Explanation:

If you have four terms without a common factor you need to group them.

Grouping like this #(4+5xy)+(-10y-2x)# achieves little.

Group the terms differently:

#(4-2x)+(5xy-10y)" "larr# find the HCF of each bracket

#=2(2-x) color(blue)(+5y(x-2))" "larr# divide #-1# out as a factor

#=2(2-x)-5y(-x+2)" "larr# the signs change

#2(2-x)-5y(2-x)" "larr# makes equal brackets

#(2-x)(2-5y)" "larr# there are two factor

OR:

#(4-10y) +(-2x+5xy)#

#=2(2-5y)+x(-2+5y)#

#=2(2-5y)-x(2-5y)#

#=(2-5y)(2-x)#