How do you factor #h(x)=x^3-3x^2-x+3#?
1 Answer
Sep 27, 2015
Factor by grouping and using the difference of squares identity to find:
#x^3-3x^2-x+3 = (x-1)(x+1)(x-3)#
Explanation:
The difference of squares identity is:
We use that with
#x^3-3x^2-x+3#
#=(x^3-3x^2)-(x-3)#
#=x^2(x-3)-1*(x-3)#
#=(x^2-1)(x-3)#
#=(x^2-1^2)(x-3)#
#=(x-1)(x+1)(x-3)#