How do you factor #x^3-2x^2-4x+8# by grouping?
2 Answers
Explanation:
grouping:
then using difference of squares:
Explanation:
grouping in 'pairs' gives.
#[x^3-2x^2]+[-4x+8]# factorising each pair.
#x^2(x-2)-4(x-2)# 'Taking out' a common factor of (x - 2)
#(x-2)(x^2-4)........ (A)#
#x^2-4 color(blue)" is a difference of squares"# and factorises
#color(red)(|bar(ul(color(white)(a/a)color(black)(a^2-b^2=(a-b)(a+b))color(white)(a/a)|)))#
#x^2=(x)^2" and " 4=(2)^2rArra=x" and "b=2#
#rArrx^2-4=(x-2)(x+2)# Substituting in (A) :
#(x-2)(x-2)(x+2)#
#rArrx^3-2x^2-4x+8=(x-2)^2(x+2)#