How do you factor #x^9+1#?
1 Answer
Explanation:
The easiest way to do this is probably using Complex arithmetic and de Moivre's formula:
#(cos theta + i sin theta)^n = cos n theta + i sin n theta#
We find that the nine
#cos ((k pi)/9) + i sin ((k pi)/9)#
for
In order to find factors with Real coefficients, we can pair up the Complex conjugate pairs like this:
#(x - cos ((k pi)/9) - i sin((k pi)/9))(x - cos ((-k pi)/9) - i sin((-k pi)/9))#
#=(x - cos ((k pi)/9) - i sin((k pi)/9))(x - cos ((k pi)/9) + i sin((k pi)/9))#
#=(x - cos ((k pi)/9))^2 - (i sin((k pi)/9))^2#
#=x^2 - 2 cos((k pi)/9) x + 1#
for
Hence:
#x^9+1 = (x+1)(x^2 - 2 cos((pi)/9) x + 1)(x^2 - 2 cos((3pi)/9) x + 1)(x^2 - 2 cos((5pi)/9) x + 1)(x^2 - 2 cos((7pi)/9) x + 1)#