How do you factor #z^3-z^2-13z+4#?
1 Answer
Explanation:
By the rational root theorem, any rational zeros must be expressible in the form
That means that the only possible rational zeros are:
#+-1# ,#+-2# ,#+-4#
Let
We find
#z^3-z^2-13z+4 = (z-4)(z^2+3z-1)#
We can factor the remaining quadratic factor by completing the square:
#z^2+3z-1#
#= (z+3/2)^2-9/4+1#
#= (z+3/2)^2-5/4#
#= (z+3/2)^2-(sqrt(5)/2)^2#
#= (z + 3/2 - sqrt(5)/2)(z + 3/2 + sqrt(5)/2)#
Putting it all together:
#z^3-z^2-13z+4 = (z-4)(z + 3/2 - sqrt(5)/2)(z + 3/2 + sqrt(5)/2)#