How do you find a quadratic function f(x) = ax² + bx + c given maximum value 9; zeros of f are -6 and 0?

2 Answers
Apr 2, 2017

#f(x) = -x^2-6x#

Explanation:

#f(x) = ax^2+bx+c#

#f'(x) = 2ax+b#

#f''(x) = 2a#

We are told that #f(x)# has a maximum value.
#:. f''(x) <0 -> a<0#

We are also told that #f(x)# has zeros of #-6# and #0#

Hence: #(x+6)# is a factor of #f(x)#
Also: #-x# is a factor of #f(x)# (since #a<0)#

#:. f(x) = -x(x+6) -> -x^2-6x#

To check our result, we are told that #f_max = 9#

With our result #f'(x) = -2x-6#

For a critical value #f'(x) = 0 -> -2x-6 =0#
#:. -2x=6 -> x=-3# should give the maximum value of #f(x)#

#f(-3) = 3(-3+6) = 9# which is the given maximum value of #f(x)#

Apr 2, 2017

#y=-x^2-6x#

Explanation:

If the vertex is a maximum then the graph is of general shape #nn#
Consequently the coefficient of #x^2# ie #a#, is negative so we have:

#color(brown)(y=-ax^2+bx+c" "->" "y=(-1)ax^2+bx+c)#

#color(brown)("The x-intercepts are at "x=-6 and x=0)#

#x_("vertex")# is half way between these so we have:

#x_("vertex")=(-6)/2=-3#

It is given that #y_("vertex")=9#

#color(brown)("Vertex"->(x,y)=(-3,9)#

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#color(blue)("We now have 3 points and 3 unknowns so solvable")#

Form the vertex:
#9=-a(-3)^2+b(-3)+c" "->" "9=-9a-3b+c#

From x-intercept #=-6#
#0=-a(-6)^2+b(-6)+c" "->" "0=-36a-6b+c#

From x-intercept #=0#
#0=-a(0)^2+b(0)+c" "->" "color(green)(ul(bar(|color(white)(2/2)c = 0color(white)(2/2)|))#

..........................................................................
Using #c=0# we have:

#9=-9a-3b" "..............Equation(1)#
#0=-36a-6b" ".............Equation(2)#

Consider #Equation(2)#

Write as #+36a=-6b#
divide both sides by #-6#

#36/(-6)a=b#

#b=-6a" "........................Equation(3)#

Using equation(3) substitute for #b# in equation(1)

#9=-9a-3(-6a)#

#9=-9a+18a#

#9=+9a#

#color(green)(ul(bar(|color(white)(2/2)a=1color(white)(2/2)|)#

Using #a=1# substitute for #a# in equation(1)

#9=-9(1)-3b#

Multiply both sides by ( -1 )

#-9=+9+3b#

#-18=3b#

#color(green)(ul(bar(|color(white)(2/2)b=(-18)/3 = -6color(white)(2/2)|)))#
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
#y=-ax^2+bx+c" "->" "y=-x^2-6x#

Tony B