How do you find all solutions of the differential equation #dy/dx=xy+x+y+1#?

1 Answer
Mar 2, 2017

I gor: #y=e^(x^2/2+x+c)-1#

Explanation:

I would try to rearrange it as:
#(dy)/(dx)=y(x+1)+(x+1)#
and:
#(dy)/(dx)=(x+1)(y+1)#
I will then separate it to get:
#(dy)/(y+1)=(x+1)dx#
and integrate both sides:
#int(dy)/(y+1)=int(x+1)dx#
solve the integrals:
#ln(y+1)=x^2/2+x+c#
rearrange (taking the exponential of both sides to get rid of the #ln#):
#y+1=e^(x^2/2+x+c)#
and:
#y=e^(x^2/2+x+c)-1#