How do you find all the zeros of #(3x^6+x^2-4)(x^3+6x+7)#?
1 Answer
This product has zeros:
-
#1# -
#-1# (with multiplicity#2# ) -
#+-(sqrt((4sqrt(3)-3)/12))+-(sqrt((4sqrt(3)+3)/12))i# -
#1/2+-(3sqrt(3))/2 i#
Explanation:
The zeros of
Zeros of
Note that all of the degrees are even and the sum of the coefficients is
Hence this sextic has zeros
#(x-1)(x+1) = x^2-1#
We find:
#3x^6+x^2-4 = (x^2-1)(3x^4+3x^2+4)#
Treating the remaining quartic factor as a quadratic in
#x^2 = (-3+-sqrt(3^2-4(3)(4)))/(2*3)#
#=(-3+-sqrt(9-48))/6#
#=(-3+-sqrt(-39))/6#
#=-1/2+-sqrt(39)/6i#
The square roots of
#+-(sqrt((sqrt(a^2+b^2)+a)/2)) +- (sqrt((sqrt(a^2+b^2)-a)/2))i#
(see https://socratic.org/s/aw38evei)
So, putting
#a^2+b^2 = (-1/2)^2+(sqrt(39)/6)^2 = 1/4+39/36 = 48/36 = 4/3#
So:
#sqrt(a^2+b^2) = sqrt(4/3) = sqrt(4/9*3) = (2sqrt(3))/3#
Hence:
#x = +-(sqrt(((2sqrt(3))/3-1/2)/2))+-(sqrt(((2sqrt(3))/3+1/2)/2))i#
#=+-(sqrt((4sqrt(3)-3)/12))+-(sqrt((4sqrt(3)+3)/12))i#
Zeros of
Notice that
#x^3+6x+7 = (x+1)(x^2-x+7)#
The remaining quadratic factor has zeros given by the quadratic formula:
#x = (1+-sqrt((-1)^2-4(1)(7)))/(2*1)#
#=(1+-sqrt(-27))/2#
#=1/2+-(3sqrt(3))/2 i#