How do you find all the zeros of #f(x)=x^3-x^2+49x-49#?
1 Answer
Aug 19, 2016
Explanation:
This cubic factors by grouping, then by using the difference of squares identity:
#a^2=b^2=(a-b)(a+b)#
with
#f(x) = x^3-x^2+49x-49#
#=(x^3-x^2)+(49x-49)#
#=x^2(x-1)+49(x-1)#
#=(x^2+49)(x-1)#
#=(x^2-(7i)^2)(x-1)#
#=(x-7i)(x+7i)(x-1)#
Hence