#f (x) = sqrt(1+3x)#
by definition #f'(x) = lim_{h to 0} (f(x+h) - f(x))/h#
#= lim_[h to 0] 1/h (sqrt(1+3(x+h)) - sqrt(1+3x))#
multiply by conjugate
#= lim_[h to 0] 1/h (sqrt(1+3(x+h)) - sqrt(1+3x)) times (sqrt(1+3(x+h)) + sqrt(1+3x))/(sqrt(1+3(x+h)) + sqrt(1+3x))#
#= lim_[h to 0] 1/h (1+3(x+h) - (1+3x)) / (sqrt(1+3(x+h)) + sqrt(1+3x))#
#= lim_[h to 0] 1/h (3h) / (sqrt(1+3(x+h)) + sqrt(1+3x))#
#= lim_[h to 0] (3) / (sqrt(1+3(x+h)) + sqrt(1+3x))#
#= (3) / (sqrt(1+3(x)) + sqrt(1+3x))#
#= 3 / (2sqrt(1+3x )#