How do you find the angle between the vectors #u=cos(pi/3)i+sin(pi/3)j# and #v=cos((3pi)/4)i+sin((3pi)/4)j#?

2 Answers
Dec 14, 2016

#(7pi)/12#

Explanation:

The angle #theta# between two vectors #vec A# and #vec B# is related to the modulus (or magnitude) and scaler (or dot) product of #vec A# and #vec A# by the relationship:

enter image source here

# vec A * vec B = |A| |B| cos theta #

By convention when we refer to the angle between vectors we choose the acute angle.

So for this problem, let the angle betwen #vecu# and #vecv# be #theta# then:

#vec u=cos(pi/3)ulhati+sin(pi/3)ulhatj=1/2 ulhati+ sqrt(3)/2ulhatj = ((1/2),(sqrt(3)/2))#
#vec v=cos((3pi)/4)ulhati+sin((3pi)/4)ulhatj=-sqrt(2)/2ulhati + sqrt(2)/2ulhatj = ((-sqrt(2)/2),(sqrt(2)/2))#

The modulus is given by;

# |vec u| = |((1/2),(sqrt(3)/2))| \ \ \ = sqrt((1/2)^2+(sqrt(3)/2)^2)=sqrt(1/4+3/4)=sqrt(1)=1 #
# |vec v| = |((-sqrt(2)/2),(sqrt(2)/2))| = sqrt((-sqrt(2)/2)^2+(sqrt(2)/2)^2)=sqrt(2/4+2/4)=sqrt(1)=1 #

And the scaler product is:

# vec u * vec v = ((1/2),(sqrt(3)/2)) * ((-sqrt(2)/2),(sqrt(2)/2))#
# \ \ \ \ \ \ \ \ \ \ = (1/2)(-sqrt(2)/2) + (sqrt(3)/2)(sqrt(2)/2)#
# \ \ \ \ \ \ \ \ \ \ = -sqrt(2)/4 + (sqrt(2)sqrt(3))/4#
# \ \ \ \ \ \ \ \ \ \ = (sqrt(2)(sqrt(3)-1))/4#

And so using # vec A * vec B = |A| |B| cos theta # we have:

# (sqrt(2)(sqrt(3)-1))/4 = 1 * 1 * cos theta #
# :. cos theta = (sqrt(2)(sqrt(3)-1))/4#
# :. cos theta = 0.258819 ... #
# :. theta = (7pi)/12#

So the acute angle between the vectors is #(7pi)/12#

We can confirm these results graphically:
enter image source here

Dec 14, 2016

The vector

#< a cos alpha, a sin alpha > #

is in the direction

#theta = alpha#.

If a = 1, it is a unit vector, in the direction.

Here the unit vectors,

#v = < cos (3/4pi), sin (3/4pi) ># and

#u = < cos pi/3, sin pi/3 >#

are in the directions

#theta = 3/4pi and pi/3#, respectively.

So, the angle #u to v#, in between, is #3/4pi-pi/3 = 5/12pi#.

In the sense #u to v#, it is the supplement #pi-5/12pi = 7/12 pi#.