How do you find the axis of symmetry, and the maximum or minimum value of the function #y=-3x^2-12x-3#?

1 Answer
Apr 30, 2018

#x=-2," max value "=9#

Explanation:

#"given a quadratic in standard form ";ax^2+bx+c;a!=0#

#"then the x-coordinate of the vertex which is also the"#
#"axis of symmetry can be found using"#

#•color(white)(x)x_(color(red)"vertex")=-b/(2a)#

#"here "a=-3,b=-12,c=-3#

#rArrx_("vertex")=-(-12)/-6=-2#

#rArr"axis of symmetry is "x=-2#

#"the vertex lies on the axis of symmetry thus substituting"#
#"x = - 2 into the equation gives y-coordinate"#

#rArry_("vertex")=-3(-2)^2-12(-2)-3=9#

#rArrcolor(magenta)"vertex "=(-2,9)#

#"to determine if vertex is maximum/minimum"#

#• " if "a>0" then minimum turning point"#

#• " if "a<0" then maximum turning point"#

#"here "a=-3<0#

#rArr-3x^2-12x-3" has a maximum at "(-2,color(red)(9))#

#"with maximum value "=9#
graph{-3x^2-12x-3 [-20, 20, -10, 10]}