How do you find the axis of symmetry, graph and find the maximum or minimum value of the function #f(x) = x^2 + 6x - 7#?

1 Answer
Nov 2, 2017

Vertex #(-3,-16)#

Axis of symmetry #x=-3#

Explanation:

Given -

#y=x^2+6x-7#

Vertex

#x=(-b)/(2a)=(-6)/(2xx1)=-3#

At #x=-3#

#y=(-3)^2+6(-3)-7#
#y=9-18-7=-16#

Vertex #(-3,-16)#

Axis of symmetry #x=-3#

Since the coefficient of #x^2# is positive, the parabola opens up.

Take a few points on either side of #x=-3#. Find the corresponding #y# values . plot them on a graph sheet. join all the points with the help of a smooth curve. You get the parabola.

enter image source here

enter image source here