Coterminal angles are angles which are equal modulo #2 pi#
That is: #alpha# and #beta# are coterminal angles if #alpha - beta = 2n pi# for some integer #n#.
For example, #(11pi)/4# and #(3pi)/4# are coterminal, since:
#(11pi)/4 - (3pi)/4 = (8pi)/4 = 2pi = 2n pi# with #n = 1#
Every angle has a unique coterminal angle in the range #[0, 2 pi)#
If #theta >= 0# then #theta - 2 floor(theta/(2pi)) pi in [0, 2 pi)#
If #theta < 0# then #theta + 2 ceil((-theta)/(2pi)) pi in [0, 2 pi)#
Coterminality is an example of an equivalence relation
If we use the symbol #~# to mean "is coterminal with" then we find:
Reflexive: For all #alpha#: #alpha ~ alpha#
Commutative: For all #alpha, beta#: #alpha ~ beta <=> beta ~ alpha#
Transitive: For all #alpha#, #beta#, #gamma#: if #alpha ~ beta# and #beta ~ gamma# then #alpha ~ gamma#