How do you find the derivative of # f(t)= (t^4 +4t^2 -2)^(4/7)# using the chain rule?

1 Answer
Jan 29, 2016

here is how you do it friend,

Explanation:

here,
#f(t)=(t^4+4t^2-2)^(4/7)#

so,

#d/(dt)(f(t))#

#=d/(dt)(t^4+4t^2-2)^(4/7)#

#=4/7(t^4+4t^2-2)^(4/7-1)*d/(dt)(t^4+4t^2-2)#

#=4/7(t^4+4t^2-2)^((-3)/7)[d/(dt)(t^4)+4d/(dt)(t^2)-d/(dt)(2)]#

#=4/7(4t^3+8t-0)/((t^4+4t^2-2)^(3/7))#

#=(16t^3+32t)/(7(t^4+4t^2-2)^(3/7))#