How do you find the derivative of #f(x)=sqrt(ax+b)#?

1 Answer
Dec 23, 2016

#f'(x)=a/(2sqrt(ax+b))#

Explanation:

differentiate using the #color(blue)"chain rule"#

#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(2/2)|)))to(A)#

#"let " u=ax+brArr(du)/(dx)=a#

#rArry=u^(1/2)rArr(dy)/(du)=1/2u^(-1/2)#

substitute into (A), changing u back into terms of x

#rArrdy/dx=1/2u^(-1/2).a=a/(2sqrt(ax+b))#