How do you find the derivative of #ln(x^2-4)#?
1 Answer
Apr 13, 2016
Explanation:
Using the
#color(blue)" chain rule "#
#d/dx [ f(g(x)) ] = f'(g(x)) . g'(x) # and the standard derivative
# D(lnx) = 1/x #
#"------------------------------------------------------------------"# f(g(x)) =
#ln(x^2 - 4) rArr f'(g(x)) = 1/(x^2 - 4) # and g(x)
# = x^2 - 4 rArr g'(x) = 2x #
#"------------------------------------------------------------------"#
#rArr d/dx[f(g(x))] = 1/(x^2 - 4) xx 2x = (2x)/(x^2 - 4) #