How do you find the domain and range of #f(x)= x^2- 6x + 8#?
1 Answer
Feb 21, 2018
Explanation:
#f(x)" is defined for all real values of x"#
#rArr"domain is "x inRR#
#"to determine the range express "f(x)" in "color(blue)"vertex form"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(f(x)=a(x-h)^2+k)color(white)(2/2)|)))#
#"where "(h,k)" are the coordinates of the vertex and a is"#
#"a multiplier"#
#"using the method of "color(blue)"completing the square"#
#f(x)=x^2+2(-3)xcolor(red)(+9)color(red)(-9)+8#
#color(white)(f(x))=(x-3)^2-1#
#rArrcolor(magenta)"vertex "=(3,-1)#
#"to determine if the vertex is a max/min then"#
#• " if "a>0" then vertex is minimum "uuu#
#• " if "a<0" then vertex is maximum "nnn#
#"here "a=1>0rArr" vertex is a minimum"#
#rArr"range is "[-1,+oo)#
graph{x^2-6x+8 [-10, 10, -5, 5]}