How do you find the domain of #f(x) = sqrt((x+3)/(2-x))#?

1 Answer
Jul 20, 2017

Domain: # -3 <= x < 2 #, in interval notation : #[-3 , 2)#

Explanation:

#f(x) = sqrt((x+3)/(2-x)) #

Domain: Restriction #x -2 != 0 or x !=2# , Under root must not be

negative quantity , so #(x+3)/(2-x) >=0 # , critical points are

#x= -3 and x= 2#
Sign change:

When # x < -3 # sign of #(x+3)/(2-x) # is #(-)/(+)= (-) ; < 0#

When # -3 <= x < 2 # sign of #(x+3)/(2-x) # is #(+)/(+)= (+) ; >= 0#

When # x >2 # sign of #(x+3)/(2-x) # is #(+)/(-)= (-) ; < 0#

so for # -3 <= x < 2 , (x+3)/(2-x) >=0 #

Domain: # -3 <= x < 2 #, in interval notation : #[-3 , 2)#

graph{((x+3)/(2-x))^0.5 [-11.25, 11.25, -5.625, 5.625]} [Ans]