How do you find the exact value of #arctan(1/2)+arctan(1/3)#?

1 Answer
May 14, 2015

Suppose #alpha = arctan(1/2)# and #beta = arctan(1/3)#

What is the value of #tan(alpha + beta)# ?

It's probably easiest to calculate #sin alpha#, #cos alpha#, #sin beta# and #cos beta# first:

If #alpha = arctan(1/2)#, then #1/2 = tan alpha = sin alpha / cos alpha#.

Multiplying through by #2cos alpha# we get

#cos alpha = 2 sin alpha#

Squaring both sides and using #sin^2 alpha + cos^2 alpha = 1# we get

#4 sin^2 alpha = cos^2 alpha = 1 - sin^2 alpha#

Adding #sin^2 alpha# to both sides and dividing by 5 we get

#sin^2 alpha = 1/5#

So #sin alpha = 1/sqrt(5)# and #cos alpha = 2 sin alpha = 2/sqrt(5)#.

Similarly, we can find #sin beta = 1/sqrt(10)# and #cos beta = 3/sqrt(10)#.

Now we can calculate

#tan(alpha + beta) = sin(alpha+beta)/cos(alpha+beta)#

#=(sin alpha cos beta + sin beta cos alpha)/(cos alpha cos beta - sin alpha sin beta)#

The numerator:

#sin alpha cos beta + sin beta cos alpha#

#=(1/sqrt(5))(3/sqrt(10)) + (1/sqrt(10))(2/sqrt(5))#

#=5/sqrt(50) = 1/sqrt(2)#

The denominator:

#cos alpha cos beta - sin alpha sin beta#

#(2/sqrt(5))(3/sqrt(10)) - (1/sqrt(5))(1/sqrt(10))#

#=5/sqrt(50) = 1/sqrt(2)#

So putting these together:

#tan(alpha + beta) = (1/sqrt(2))/(1/sqrt(2)) = 1#

So #alpha + beta = pi/4#