How do you find the exact value of #sec165# using the half angle formula?

1 Answer
Jan 5, 2017

#- (2)/(sqrt(2 + sqrt3)#

Explanation:

Use the trig identity:
#2cos^2 a = 1 + cos 2a.# (1)
In this case a = 165, and 2a = 330.
sec 330 = 1/(cos 330). First, find cos (330).
#cos (330) = cos (- 30 + 360) = cos (-30) = cos 30 = sqrt3/2#.
Substitute in equation (1), we get:
#2cos^2 (165) = 1 + cos (330) = 1 + sqrt3/2 = (2 + sqrt3)/2#
#cos^2 (165) = (2 + sqrt3)/4#
#cos (165) = +- sqrt(2 + sqrt3)/2#.
Since 165 is in Quadrant II, then, we take the negative value.
#sec (165) = 1/(cos) = - 2/(sqrt(2 + sqrt3) = #