How do you find the GCF of #14b, 56b^2#?

1 Answer
Mar 5, 2018

See a solution process below:

Explanation:

First, factor the two terms as:

#14b = 2 xx 7 xx b#

#56b^2 = 2 xx 2 xx 2 xx 7 xx b xx b#

Next, identify the common terms in each factorization:

#14b = color(red)(2) xx color(red)(7) xx color(red)(b)#

#56b^2 = color(red)(2) xx 2 xx 2 xx color(red)(7) xx color(red)(b) xx b#

The Greatest Common Factor is therefore:

#"GCF" = color(red)(2) xx color(red)(7) xx color(red)(b) = 14b#