How do you find the important points to graph #f(x) = x^3 - 9x^2 + 27x - 26#?
1 Answer
See explanation...
Explanation:
Given:
#f(x) = x^3-9x^2+27x-26#
I can see that this is quite similar to
#(x-3)^3 = x^3+3(x^2)(-3)+3(x)(-3)^2+(-3)^3#
#color(white)((x-3)^3) = x^3-9x^2+27x-27#
So we find:
#f(x) = (x-3)^3+1#
Now the sum of cubes identity can be written:
#a^3+b^3 = (a+b)(a^2-ab+b^2)#
So we find:
#f(x) = (x-3)^3+1#
#color(white)(f(x)) = (x-3)^3+1^3#
#color(white)(f(x)) = ((x-3)+1)((x-3)^2-(x-3)+1)#
#color(white)(f(x)) = (x-2)(x^2-6x+9-x+3+1)#
#color(white)(f(x)) = (x-2)(x^2-7x+13)#
Note that
So we have:
-
#f(x)# has#x# intercept#(2, 0)# -
#f(x)# has#y# intercept#(0, -26)# -
#f(x)# is like#y = x^3# but shifted right by#3# units and up by#1# unit.
Putting this all together we find
graph{(y-(x^3-9x^2+27x-26))(6x^2+(y+26)^2-0.06)(6(x-2)^2+y^2-0.06)(6(x-3)^2+(y-1)^2-0.06) = 0 [-7.375, 12.625, -34, 18]}