How do you find the integral #ln( x + sqrt(x^2 -1)) #?
1 Answer
Explanation:
Use a hyperbolic substitution.
Put:
#x = cosh u#
Then:
#dx/(du) = sinh u#
and:
#u = ln(x+sqrt(x^2-1))#
and:
#int ln(x+sqrt(x^2-1)) dx = int ln(cosh u + sqrt(cosh^2 u - 1)) dx/(du) color(white)(.) du#
#color(white)(int ln(x+sqrt(x^2-1)) dx) = int ln(cosh u + sqrt(sinh^2 u)) sinh u color(white)(.) du#
#color(white)(int ln(x+sqrt(x^2-1)) dx) = int ln(cosh u + sinh u) sinh u color(white)(.) du#
#color(white)(int ln(x+sqrt(x^2-1)) dx) = int ln(e^u) sinh u color(white)(.) du#
#color(white)(int ln(x+sqrt(x^2-1)) dx) = int u sinh u color(white)(.) du#
#color(white)(int ln(x+sqrt(x^2-1)) dx) = int (u sinh u + cosh u)-cosh u color(white)(.) du#
#color(white)(int ln(x+sqrt(x^2-1)) dx) = u cosh u - sinh u + C#
#color(white)(int ln(x+sqrt(x^2-1)) dx) = x ln(x+sqrt(x^2-1)) - sqrt(x^2-1) + C#