How do you find the integral #ln x / x#?

1 Answer
Sep 12, 2015

#int ln x / x = (ln x)^2/2 + C#

Explanation:

#int ln x / x = ?#

This is a classic application of u -substitution.

Let #u = ln x#. Then #du = 1/x dx#.

Now we have

#int ln x/x dx = int u du#

We can evaluate this easily by using the power rule:

#int u du = u^2 /2 + C#

Now, substituting back #u#, we find

#u^2 /2 + C = (ln x)^2/2 + C#

And there is our solution.

#int ln x / x = (ln x)^2/2 + C#