How do you find the integral # ln(x)/(x^2)#? Calculus Techniques of Integration Integration by Parts 1 Answer bp Sep 7, 2015 #-lnx /x -1/x +C# Explanation: Integration by parts can be done in this case, #int (ln x)/x^2 dx# =#int lnx*d/dx(-1/x) dx#= #-lnx /x -int d/dx (lnx)*(-1)/x dx+C#= #-lnx /x+int 1/x^2 dx +C#= #-lnx /x -1/x +C# Answer link Related questions How do I find the integral #int(x*ln(x))dx# ? How do I find the integral #int(cos(x)/e^x)dx# ? How do I find the integral #int(x*cos(5x))dx# ? How do I find the integral #int(x*e^-x)dx# ? How do I find the integral #int(x^2*sin(pix))dx# ? How do I find the integral #intln(2x+1)dx# ? How do I find the integral #intsin^-1(x)dx# ? How do I find the integral #intarctan(4x)dx# ? How do I find the integral #intx^5*ln(x)dx# ? How do I find the integral #intx*2^xdx# ? See all questions in Integration by Parts Impact of this question 2455 views around the world You can reuse this answer Creative Commons License